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Optimization of Residential Green Space for Environmental Sustainability and Property 1 

Appreciation in Metropolitan Phoenix, Arizona 2 

 3 

 4 

1. Introduction 5 

Urban regions in the United States are dominated by residential land, which creates challenges 6 

and opportunities for sustainable land management due to the preponderance of outdoor space in 7 

yards. Studies estimated that approximately 65% of all urban land is devoted to single-family 8 

residential neighborhoods and it is the most prevalent zoning in areas slated for future 9 

development (Burchell & Shad, 1998; Burchell & Mukherji, 2003; Hirt, 2014). Residential land 10 

use is often associated with proliferating turf grass in the continental U.S., which in many 11 

regions require extensive irrigation to maintain (Milesi et al., 2005; Cook and Faeth, 2006). This 12 

is particularly true in the arid U.S. Southwest, where precipitation can be 18 cm or less per year 13 

(Sheppard et al., 2002). Nevertheless, irrigated landscaping provides both environmental benefits 14 

such as lower temperatures (Wang et al., 2016; Wang, 2018) and economic benefits such as 15 

higher home values (Kestens et al., 2004, Mei et al., 2018). Research is therefore needed to better 16 

understand both the relationships and tradeoffs between vegetation cover, land surface 17 

temperature, water use, and home values. 18 

Generally, green infrastructure contributes to a range of ecosystem services in cities (e.g., 19 

habitat provisioning, stormwater regulation, carbon sequestration), though the mix and extent of 20 

services depends on vegetative type and management, and homogenous turf landscapes likely 21 

provide nominal ecological benefits (Larson et al., 2016; Groffman et al., 2017). Green 22 

infrastructure can also provide socioeconomic and health benefits. For illustration, large public 23 
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green spaces can influence social capital by providing an environmental-friendly gathering place 24 

for residents to develop and maintain neighborhood social ties (Kweon et al., 1998; Kuo et al., 25 

1998; Maas et al., 2009). The presence of green vegetation can also significantly contribute to 26 

residents’ sense of social safety and adjustment (Kuo et al., 1998). In addition, neighborhood 27 

parks and views of natural landscapes have positive contributions to home values (Lo and Faber, 28 

1997; Escobedo et al. 2015). From a public health perspective, urban green spaces can not only 29 

help maintain physical health, but also improves mental functioning, mental health and wellbeing 30 

(Sugiyama et al., 2008).  31 

Despite all the environmental, socioeconomic and health benefits of urban green 32 

infrastructure, vegetation requires a significant amount of water for irrigation, adding demand for 33 

scarce water resources, especially in hot, arid desert cities. Research has shown that Americans 34 

irrigate more acres of turf than its largest three crops—corn, wheat, and soy—combined (Milesi 35 

et al., 2005). In desert cities, Myint et al. (2013) studied the impacts of grass fraction and tree 36 

fraction on surface temperature for the City of Phoenix and found that trees had a stronger 37 

cooling effect than grass. Middel et al. (2015) reported that a targeted 25% tree cover in Phoenix 38 

residential neighborhoods would yield a reduction of up to 2 °C at the canopy layer (2 meters 39 

above the surface). Moreover, vegetation is correlated with higher property values both at the 40 

individual parcel and within the neighborhood (Bark et al., 2011; Escobedo et al., 2015), which 41 

provides an economic benefit for property owners, but creates a trade-off with housing 42 

affordability and homeownership attainment. Resolving these trade-offs will require better 43 

understanding of the interrelationships among vegetation structure, temperature, water use, and 44 

property value. 45 
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Multiple studies have examined relationships among environmental and economic 46 

variables, but never in a single study and without the focus on residential neighborhoods. For 47 

instance, several studies examined the relationship between the composition and configuration of 48 

urban land use land cover and land surface temperature (LST), finding that the relationship 49 

varies depending on land use and region (Connors et al., 2013; Rotem-Mindali et al., 2015, 50 

Schwarz and Manceur, 2015; Li et al., 2016; Wang et al., 2019). However, most studies analyzed 51 

the cooling effect of vegetation at global or regional scales regardless of various vegetation 52 

types, with a few exceptions that examined trees only (Myint et al., 2013, Middel et al., 2015). 53 

Similarly, studies have examined relationships between vegetative cover, LST, and outdoor 54 

water use (OWU) finding that small decreases in temperature are associated with large increases 55 

in water use (Guhathakurta and Gober, 2007; Kaplan et al., 2014; Wang, 2018). These studies do 56 

not disambiguate vegetative cover type but have shown that native shrubs are well adapted to the 57 

desert climate that can thrive without much rainfall or irrigation (Martin, 2001; Stabler and 58 

Martin, 2002). Additionally, vegetation with large canopy and structure, such as mature trees, 59 

can also provide shade to reduce temperature for better thermal comfort (Armson et al., 2012; 60 

Armson et al., 2013; Middel et al., 2015; Zhao et al., 2018a). Finally, another subset of studies 61 

examined relationships between urban vegetation and property sales value (PSV), generally 62 

finding a positive relationship, and suggest that trees may have the most positive effect (Kestens 63 

et al., 2004, Mei et al., 2018). Given variability in effect of different types of vegetative cover 64 

(i.e., trees, shrubs, grass) on urban cooling, water use, and property values, understanding the 65 

outcomes associated with different vegetative mixes in arid desert urban residential 66 

neighborhoods is essential for minimizing trade-offs and maximizing co-benefits. 67 
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To better understand the related dynamics between environmental and economic 68 

tradeoffs, this study examines single-family residential neighborhoods with homeowner 69 

associations (HOAs) in the Phoenix metropolitan area (PMA), Arizona, USA. HOAs are entities 70 

that dictate minimum landscaping requirements and claim to maintain property values over time 71 

(McKenzie, 1994; Wentz et al., 2016). The first objective is to examine the impacts of spatial 72 

composition of different vegetation cover types on LST, OWU and PSV in major residential 73 

communities in the PMA. The second objective is to optimize the spatial composition of 74 

residential green spaces in order to achieve a relatively lower LST and OWU and to maintain 75 

PSV at the same time. The third objective is to propose residential landscaping strategies for 76 

urban sustainability of desert cities in terms of water conservation and urban heat mitigation 77 

based on the optimization results. 78 

 79 

 80 

2. Materials and Methods 81 

2.1 Study Area 82 

The PMA is located in Maricopa County, Arizona, USA. The total population is about 4.67 83 

million residents with nearly 1.66 million households, as estimated by the 2018 American 84 

Community Survey (ACS) (U.S. Census Bureau, 2019). As of 2019, the housing stock consists 85 

predominantly (~76.2%) of single-family homes with an increasing number of multi-family 86 

structures and mobile/manufactured homes (MAG, 2019). The 2018 mean household income of 87 

PMA was $87,435, which was lower than the national mean of $87,864 (U.S. Census Bureau, 88 

2019). PMA residents, therefore, need to be conscious of the costs associated with cooling 89 

homes, caring for landscaping, and resale values. 90 
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The PMA is part of the northeastern Sonoran Desert featuring a subtropical semi-arid hot 91 

desert climate (Köppen climate classification: BWh) (Figure 1). It is characterized by long, hot 92 

summers, but short, mild winters. The daily high exceeds 37.8 ºC for an average of 110 days 93 

every year, which normally occurs between early June and early September (Wang et al., 2016). 94 

The highest temperature can reach over 43.3 ºC (110 ºF) for an annual average of 18 days (Wang 95 

et al., 2016). The mean annual precipitation in the past 30 years is merely 204 mm (8.03 inch) 96 

with most rainfall taking place during the summer monsoon season (U.S. Climate Data, 2020). 97 

This means that residential vegetation is largely managed through a combination of automated 98 

irrigation systems (e.g., drip, sprinkler), flood irrigation (in older neighborhoods), and drought 99 

tolerant vegetation. 100 

To study the economic and environmental tradeoffs, we selected a sample of 302 local 101 

single-family residential communities that are managed by HOAs (Figure 1). Selecting only 102 

neighborhoods managed by HOAs provides continuity in the structure and governance of 103 

landscaping. The 302 communities were derived from a random sample of single-family 104 

residential subdivisions in Maricopa County using Maricopa County Assessor's Subdivision and 105 

Parcel Data. Detailed sample selection methods can be found in Minn et al. (2015), Ye et al. 106 

(2018) and Turner & Stiller (2020). 107 

 108 

2.2 Data 109 

Figure 2 shows the flowchart of research design. Four data sets were used to evaluate the trade-110 

offs among LST, OWU and PSV with regards to residential green space composition. The data 111 

sets include land cover classification, remotely sensed surface temperature imagery, model-112 

predicted actual evapotranspiration (ETa), and property sales records from 2010. The reason why 113 
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2010 data sets were used is because all the data and products used were available from this year. 114 

Although it sounds out of date, the purpose of this study is to generalize empirical trade-off 115 

relationships and we assume these relationships would hold over time and space for small local 116 

residential communities.  117 

 118 

2.2.1 Land surface temperature 119 

We calculated a summer daytime mean LST for each residential community using a combination 120 

of Landsat 5 Thematic Mapper and Advanced Spaceborne Thermal Emission and Reflection 121 

Radiometer (ASTER) data for June through September in 2010. The reason why both Landsat 122 

and ASTER images were used is because of the poor temporal resolution of single satellite data. 123 

The LST data set from Landsat 5 was obtained from Level-2 provisional surface temperature 124 

product that has a 30-m spatial resolution, which is resampled from thermal bands of 120-m 125 

spatial resolution, and has a relative accuracy of 0.19 K (Cook et al., 2014). We also acquired 126 

ASTER surface kinetic temperature product (AST08) that has 90-meter spatial resolution and a 127 

relative accuracy of 0.3 K (JPL Propulsion Laboratory, 2001). Both Landsat and ASTER LST 128 

products are calibrated, processed, and distributed by NASA and USGS. We calculated 129 

summertime mean LST value for each residential community using 23 cloud-free images, within 130 

which 7 were from ASTER and 16 were from Landsat 5. 131 

 132 

2.2.2 Outdoor water use 133 

The municipal water delivery system in the PMA does not have separate water meters for indoor 134 

and outdoor water use. We therefore estimated OWU using ETa as a proxy (Singh et al., 2014). 135 

ETa was modeled using a surface energy balance model named METRIC (Mapping 136 
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Evapotranspiration at high spatial Resolution with Internalized Calibration) (Allen et al., 2007a). 137 

Surface energy balance model is an essential approach for heat flux and evaporation estimation 138 

in applied meteorology and hydrology. More specifically, the METRIC model computes the 139 

latent heat flux as the residue of the surface energy balance, which can be written as: 140 

 141 

LE = Rn – G – H,                                                           (1) 142 

 143 

where Rn is the net incoming radiation, G is the ground heat flux, H is the sensible heat flux, and 144 

LE is the latent heat flux. METRIC has been successfully applied to Landsat and MODIS images 145 

to predict ETa at various spatial scales (e.g. Trezza, 2002; Hendrickx and Hong, 2005; Allen et 146 

al., 2007b; Zheng et al., 2015). Research also demonstrated ETa prediction accuracy of 15%, 147 

10% and 5% for daily, monthly, and seasonal timescales (Plaza et al., 2009; Shao and Lunetta, 148 

2012). Model predictions can effectively represent ETa for both urban and non-urban areas with 149 

or without irrigation (Allen et al., 2007b). More detailed model calculation and implementation 150 

procedures can be found in Allen et al. (2007a). 151 

Model predicted ETa maps were created using 22 time-series cloud-free Landsat 5 images 152 

and meteorological data collected from the weather stations in the Arizona Meteorological 153 

Network (AZMET, 2020) that covered the entire year of 2010. Gaps between each two adjacent 154 

image acquisition dates were filled using a polynomial curve-fitting method at every single 155 

image pixel location, which finally resulted in 365 daily ETa maps of 30-meter resolution. A 156 

summertime total ETa map was created by aggregating all the daily images in June, July, August, 157 

and September. We calculated a mean ETa value for each selected residential community. Model 158 

predicted ETa values were validated using actual water usage data acquired from 49 community 159 
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parks in the PMA as described in Kaplan et al. (2014). Detailed validation procedure and results 160 

can be found in Wang (2018). 161 

 162 

2.2.3 Property sales value 163 

We obtained property sales records between 2009 to 2011 at parcel level from the Maricopa 164 

County Assessor’s Office (2020). Multiple years’ records were used because the number of sales 165 

records from one single year was relatively small and some communities show no record in 166 

2010. In addition, using three-year data can reduce the large variation caused by the economic 167 

recession in 2008-2009. We calculated a mean PSV (U.S. Dollars in thousands, $k) using all the 168 

sales records within each selected residential community. 169 

 170 

2.2.4 Land cover classification 171 

Land cover classification for the PMA was performed by the Central Arizona – Phoenix Long-172 

Term Ecological Research (CAP-LTER) at Arizona State University using 2010 National 173 

Agriculture Imagery Program (NAIP) imagery and an object-based image classification 174 

technique. Detailed classification procedure and metadata can be found at the CAP-LTER 175 

website (CAP-LTER, 2015) and in Li et al. (2014). This land cover map has 1-meter spatial 176 

resolution and 12 land cover classes with an overall accuracy of nearly 92%. We selected four 177 

green space classes that include grass, shrubs, trees, and open soils, and then calculated percent 178 

area of each class within each selected residential community. 179 

 180 

2.3 Analysis 181 



9 
 
 

We first performed a linear regression analysis to explore the empirical relationships between 182 

landscaping factors and LST, OWU, and PSV. An optimization analysis was subsequently used 183 

to examine the tradeoffs between these variables.  184 

 185 

2.3.1 Regression analysis 186 

We used simple linear regression to examine the interrelationship among three dependent 187 

variables: LST, OWU and PSV. We then used multivariate linear regression analysis to quantify 188 

the empirical relationship between three dependent variables and percent land cover (grass%, 189 

shrub%, tree% and soil%) as independent variables. The regression equation is formulated as: 190 

 191 

�� = ��� + ∑ ���	� + 
�                                                       (2)                                                                         192 

 193 

where: 194 

i = index of four independent variables (grass%, shrub%, trees% and soil%); 195 

j = index of three dependent variables (LST, OWU and PSV); 196 

xi = area percentage of land cover type i; 197 

β0j = intercept term of the regression model for dependent variable j; 198 

βij = coefficient estimate for land cover type i in relation to dependent variable j; 199 

ɛj = error term of the regression model for dependent variable j. 200 

 201 

2.3.2 Optimization 202 
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We formulated the optimization question as an integer programming problem with an objective 203 

function to minimize the summation of model predicted LST and OWU. Consider the following 204 

notations: 205 

 206 

I = set of all land cover types (grass, shrub, tree and soil); 207 

J = set of established empirical relationships for LST, OWU and PSV; 208 

Φ = set of vegetation land cover types (grass, shrub and tree); 209 

Ψ = set of established empirical relationships for LST and OWU; 210 

��
= observed minimum of xi; 211 

��
= observed mean of xi; 212 

��
= observed standard deviation of xi; 213 

�∑ �∈�
= observed minimum of percent all vegetation cover; 214 

�∑ �∈�
= observed mean of percent all vegetation cover; 215 

�∑ �∈�
= observed standard deviation of percent all vegetation cover; 216 

�∑ �∈�
= observed minimum of percent all land cover; 217 

�∑ �∈�
= observed mean of percent all land cover; 218 

�∑ �∈�
= observed standard deviation of percent all land cover; 219 

���
= observed mean of yj; 220 

���
= observed minimum of yj; 221 

 222 

The objective function is formulated as: 223 

 224 
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�������� ∑ ���∈� ,                                                         (3) 225 

 226 

which is subject to: 227 

 228 

�� ≤ ���
 ∀ � ∈ Ψ,                                                           (4) 229 

 230 

�� ≥ ���
 ∀ � ∈ ",                                                           (5) 231 

 232 

	� ≤  ��
+ 2��

 ∀ � ∈ $,                                                     (6) 233 

 234 

	� ≥  ��
 ∀ � ∈ $,                                                           (7) 235 

 236 

∑ 	� ≤�∈% �∑ �∈�
+ 2�∑ �∈�

,                                                 (8) 237 

 238 

∑ 	� ≥�∈% �∑ �∈�
,                                                          (9) 239 

 240 

∑ 	� ≤�∈& �∑ �∈�
+ 2�∑ �∈�

,                                                  (10) 241 

 242 

∑ 	� ≥�∈& �∑ �∈�
,                                                        (11) 243 

 244 

	�  ��'�(�) ∀ � ∈ $.                                                      (12) 245 

 246 
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The objective function (3) is to minimize the summation of empirical estimations of LST and 247 

OWU that are derived from regression equation (2). Constraint (4) is defined to force model 248 

predicted LST and OWU to be less than the observed mean, and constraint (5) is to restrict 249 

predicted LST, OWU and PSV to be greater than the observed minimum. Constraints (6) and (7) 250 

restrict the percent area of each land cover to be between the observation minimum and +2 251 

standard deviations from the observed mean. Similar to (6) and (7), constraints (8)-(9) and (10)-252 

(11) restrict the area percentage of vegetation cover and all land cover between the observation 253 

minimum and +2 standard deviations of the observed mean, respectively. Integer restrictions on 254 

area percentage of land cover types are stipulated in Constraint (12). 255 

The optimization procedure was implemented using Gurobi 9.0 Python API (Gurobi 256 

Optimization, 2020) in the Jupyter Notebook environment. We selected top 100 sub-optimal 257 

solutions to the objective function (3) that generated the smallest possible summation of LST and 258 

OWU, and then searched for the highest predicted PSV values within these 100 solutions. The 259 

top 5 best scenarios were finally selected as the optimal solutions. 260 

 261 

 262 

3. Results 263 

3.1 Summary statistics 264 

The summary statistics of land cover types, LST, OWU, and PSV are shown in Table 1. The 265 

total OWU that was estimated using ETa ranges from 105 mm to nearly 800 mm with a mean 266 

value of 453 mm for the summer months of 2010. LST ranges from 41.5 °C to 55.6 °C with a 267 

mean LST of 50.3 °C. PSV ranges from $6.1k to $4,700k with a mean PSV of $340.6k and a 268 

large standard deviation of $431.3k. For all the 302 residential neighborhoods, open soil has a 269 
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mean percent area of 38.8%, which is the largest among four land cover types. This could 270 

include desert style or unfinished landscaping. This is followed by trees (µT% = 12.1%), grass 271 

(µG% = 8.1%), and finally shrubs (µS% 3.2%). This land cover profile in residential communities 272 

in the PMA is generally consistent with ‘xeriscaped’ and other low vegetative cover yard 273 

structure types prevalent in the region. This is fairly typical too of properties in HOA 274 

neighborhoods, where vegetation composition can be regulated. Even in residential communities 275 

with relatively higher vegetative land cover, the mean percent vegetated area is only 21.1% with 276 

a maximum cover of 52.7%. 277 

  278 

3.2 Regression results 279 

Figure 3 shows the relationship among three dependent variables (LST, OWU and PSV) using 280 

simple linear regression. A statistically significant negative relationship was found between LST 281 

and OWU and between LST and PSV, while a statistically significant positive relationship 282 

existed between PSV and OWU. This implies that higher surface temperatures are generally 283 

found in residential communities of lower water use and lower home values. On the other hand, 284 

higher water use is often associated with lower surface temperatures and higher home values. We 285 

believe the underlying cause of these relationships is the variation of vegetation coverage. 286 

Multiple regression results of LST, OWU, and PSV with percent vegetation cover are 287 

presented in Table 2. Model A shows that percent vegetation cover variables can be used to 288 

explain nearly 60% (adjusted R2 = 0.598) of the total variation in LST, and the model is 289 

statistically significant at the 0.01 level. Except percent soils, all the other coefficient estimates 290 

are statistically significant and have negative contributions to LST, which means increasing 291 

percent vegetation cover can effectively lower LST in a residential community. According to the 292 
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value of standardized coefficients, the cooling efficiency is ranked as: Trees > Grass > Shrubs. 293 

Theoretically speaking, a 10% increase in percent area of grass, shrubs and trees can result in an 294 

average decrease in LST of 1.4 °C, 1.2 °C and 2.4 °C, respectively. In other words, replacing 295 

grass, shrubs and open soils with trees can potentially minimize the heating effect in local 296 

residential communities in the PMA. 297 

Model B in Table 2 shows regression results of OWU as the dependent variable. This 298 

model is also statistically significant (p-value < 0.01) and meaning that vegetation cover can 299 

explain nearly 50% of the total variation in OWU (adjusted R2 = 0.495). Percent grass and trees 300 

have significant, positive relationships with OWU, and the coefficient estimate of percent grass 301 

is much larger than trees, which means increasing percent grass area can result in more OWU 302 

than increasing the same percent area of trees. Percent soils have a negative relationship with 303 

OWU, which means increasing the percentage of open soils can potentially reduce OWU. 304 

Percent shrub is insignificant in this model. 305 

Model C in Table 2 shows the regression results of PSV. Although this model has a 306 

relatively lower goodness-of-fit (adjusted R2 = 0.228), it is statistically significant at the 0.01 307 

level. We anticipate a lower R2 because studies using hedonic models of home price are complex 308 

and show that individual factors such as house size and lot size as well as regional factors such as 309 

parks, transportation, and schools influence home prices (Glaesener and Caruso, 2015; Seo et al., 310 

2019). For our model, the coefficient estimates are positive and statistically significant at the 311 

0.05 level (p-value < 0.05). The relative contribution of vegetation land cover types to PSV is 312 

ranked as: Grass > Shrubs > Trees > Soils. This result implies that increasing vegetation cover, 313 

especially grass and shrubs, can effectively maintain a relatively higher PSV. 314 
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In summary, increasing percent tree cover alone can efficiently lower LST and OWU, but 315 

its contribution to PSV is relatively low. On the other hand, increasing percent grass cover alone 316 

can lower LST and help maintain a relatively higher PSV, but it would also largely increase 317 

OWU, which is not an ideal practice for water conservation. Although shrub has a moderate 318 

contribution to PSV, its cooling efficiency is the lowest and it does not significantly lower OWU. 319 

It becomes evident that different spatial composition of vegetation cover has varying effects on 320 

urban residential microclimate. Understanding these effects can help address the trade-off issue 321 

among LST, OWU and PSV. 322 

 323 

3.3 Optimization results 324 

We first solved the integer programming problem and obtained the top 100 sub-optimal solutions 325 

for the lowest possible summation of LST and OWU values and their corresponding land cover 326 

compositions, and then searched for the highest predicted PSV values within these solutions. 327 

These records are therefore considered as our final optimization solutions.  328 

We present top 5 optimization scenarios in Table 3. These five scenarios suggest that 329 

shrubs should be given the largest weight within all the vegetation types to maximize its 330 

environmental and economic benefits. On the other hand, minimizing the use of grass but 331 

maximizing open soil coverage can also contribute to lower LST and OWU. PSV can be higher 332 

if a larger percent grass cover is given, but OWU would also be higher as well. As suggested, a 333 

residential landscape that is composed of 1-2% grass, 11-13% shrubs, 7-9% trees, and 62-64% 334 

soils can result in the lowest possible LST and OWU and help maintain a relatively higher PSV 335 

at the same time. Within these scenarios, predicted LST varies from 49.8 ºC to 50.2 ºC, which is 336 

less than the observed mean LST (Table 1, µLST = 50.26 ºC). Predicted OWU ranges from 327.5 337 
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mm to 334.4 mm, which is around the mean minus one standard deviation (µ - σ = 329.7 mm) of 338 

observed OWU. Predicted PSV in these scenarios varies from $728.6k to $761.6k, which is 339 

higher than observed mean (µPSV = $340.6k) but lower than the mean plus one standard deviation 340 

(µ + σ = $771.9k). 341 

 342 

 343 

4. Discussion 344 

4.1 Effect of vegetation cover on LST, OWU and PSV 345 

Our analysis shows that trees provide the greatest cooling efficiency, followed by the 346 

combination of grass and shrubs. This implies that planting more trees or replacing other land 347 

cover with trees in a desert residential neighborhood has the potential lower LST to its 348 

maximum. This result is consistent with prior studies of the effect of the urban heat island effect 349 

in Phoenix and other areas that show this relationship between vegetation and land surface 350 

temperature (see Myint et al., 2013 and Middell et al., 2015). Additionally, trees provide shade 351 

and thermal comfort co-benefits (Zhao et al., 2017; Zhao et al., 2018b). These studies support 352 

efforts by the City of Phoenix, which initiated a Tree and Shade Master Plan in 2010 to 353 

ameliorate extreme heat during the summer months by increasing tree canopy from 10% in 2010 354 

to 25% by 2030 (City of Phoenix, 2010). Our study is the first to consider shrubs, which is the 355 

most populated native vegetation in a desert environment (Martin, 2001). Shrubs had the lowest 356 

cooling efficiency among all the vegetative types, meaning that shrubs are the least efficient way 357 

to achieve cooling as measured by LST in our study. They also do not provide the shade co-358 

benefit of trees.  359 
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 The rankings for water use efficiency are different than for cooling. Our result suggests 360 

that grass is the least water efficient vegetation type, while shrub has no significant contribution 361 

to OWU (Table 2). This finding is consistent with other studies that find that grass requires a 362 

large water inputs to survive in a hot, semi-arid desert climate (Vickers 2006) and that native 363 

shrubs are well adapted to desert climates (Odening et al., 1974; Bamberg et al., 1975; Martin et 364 

al., 2001; Stabler and Martin, 2002). Trees are species specific: most desert-adapted trees do not 365 

rely on irrigation, while fruit trees and deciduous trees that are also widely populated in local 366 

residential communities in the PMA heavily depend on irrigation to survive in a desert 367 

environment. Our result suggests that overall trees have higher water use efficiency than grass 368 

(Table 2), which can be considered as a landscaping alternative to lawn and turf.  369 

 Our results are consistent with other studies showing that vegetation increases property 370 

values in residential neighborhoods (Kestens et al., 2004, Bark et al., 2011, Escobedo et al., 371 

2015) Generally, percent vegetative cover in desert neighborhoods also had a significant positive 372 

relationship with PSV with grass cover having the greatest contribution, followed by shrubs and 373 

trees (Table 2). However, the goodness-of-fit of the regression model is relatively low (adj. R2 = 374 

0.228) because we did not include other factors shown to influence home values such as property 375 

size, home size, school districts, etc. While adding such variables can potentially increase R2 376 

value, it’s not relevant for this study. Rather, our goal was to examine the combined effect of 377 

different types of vegetation cover on PSV. Our study, however, shows trees have much lower 378 

contribution to PSV than grass and shrubs. This result likely deviates from previous studies 379 

conducted in Québec City and Florida because PMA has a much lower percent tree cover (only 380 

12%) and annual precipitation than temperate and humid regions (Escobedo et al., 2015; Kestens 381 

et al., 2004). We therefore suggest that it is necessary to take climate background and dominant 382 
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native vegetation into consideration when examining the effect of vegetation cover on PSV 383 

because experiences and findings from some cities may not apply to the others. Moreover, trees 384 

had the least effect on property value among three vegetation types, which could be considered a 385 

benefit in some regions given that low income communities currently have the greatest need for 386 

shade trades, but are also vulnerable to displacement if housing costs increased (Landry and 387 

Chakraborty, 2009). Overall, regional social and ecological context are important in assessing 388 

the relative benefits of trees versus grass and shrubs. 389 

 390 

4.2 Implications of optimization result and policy recommendation 391 

Five optimization scenarios in Table 3 suggest that minimizing the use of grass in residential 392 

landscaping in a desert city can contribute to a lower LST and OWU, while PSV maintains 393 

relatively high. In face of severe drought in the Southwestern U.S., California Department of 394 

Water Resources initiated the Institutional Turf Replacement Program (ITRP) to replace more 395 

than 165,000 square feet of turf with California native and water-efficient landscaping to provide 396 

long-term water savings, and each eligible household can receive a rebate of approximately $2 397 

per square foot of removed and replaced turf (CDWR, 2009). Tull et al. (2016) used 545 unique 398 

single-family residential turf rebates and found that the mean water savings were estimated at 399 

about 1 m3 per square meter of turf removal per year for each household. Another study by 400 

Matlock et al. (2019) studied 227 participating customers in southern California and found the 401 

average reduced water usage was approximately 392 m3 per year after turf removal. Both studies 402 

confirmed the effectiveness of ITRP in California, and our study further provides the theoretical 403 

basis of a similar program that can be potentially implemented in the PMA. Completely 404 

removing large grass cover or replacing grass with desert-adapted shrubs or trees can become a 405 
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sustainable development practice for residential communities in desert cities to mitigate heat and 406 

conserve water. 407 

 Another recommendation is to widely adopt xeric landscape style that mostly include 408 

individually watered and low water-use exotic and native plants as a sustainable landscaping 409 

strategy as suggested by the XeriscapeTM movement that began in Denver, Colorado in 1981 410 

(Martin, 2001). Xeriscape is a water-efficient landscaping method that has become increasingly 411 

popular in the arid southwestern U.S. (Sovocool and Morgan, 2006). Research has shown that in 412 

southern Nevada, Xeriscape can save an average of 55.8 gal/sq. ft (or 2.27 m3/m2) per year 413 

resulting from replacing turf grass with xeric landscape (Sovocool and Morgan, 2006). 414 

Households realized a 30% annual water use reduction after converting to xeric landscape that 415 

equals approximately 363 m3 annually (Sovocool and Morgan, 2006). Xeriscape can also save 416 

labor and money for maintenance because of water-efficient and desert-adapted plants and 417 

efficient irrigation. On the other hand, Martin (2008) compared four landscape design archetypes 418 

and proposed an oasis landscape design that consists of a mixture of small areas of well-irrigated 419 

turf grass interspersed with drip-irrigated landscape trees and shrubs and decomposed granite 420 

mulch has an overall better performance in water conservation than the traditional xeric style 421 

landscape in Phoenix, Arizona. 422 

 423 

4.3 Limitations and future research 424 

This study only used summer daytime remotely sensed data for the analysis because the PMA 425 

experiences extreme heat in the summer months that has brought various concerns to its residents 426 

and sustainability. To better quantify the effect of percent vegetation cover on LST and OWU, 427 

one should also consider nighttime and other seasons. Due to the limitation of data, our study 428 
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only used three inclusive vegetation types of grass, shrubs, and trees, which cannot reflect the 429 

real landscaping situation. Different vegetation species have various drought resistant 430 

capabilities. It would be ideal if major local vegetation species were identified and used in the 431 

analyses instead of using these three inclusive vegetation types. In addition, we did not have 432 

more detailed data at parcel or household level, and the analysis was performed using the entire 433 

residential community as a study unit. Urban sustainability is broadly influenced by policy 434 

makers and urban planners at larger spatial scales, but household behaviors also have a 435 

significant influence on landscape sustainability at smaller spatial scales (Cook et al., 2011). 436 

 Further research can be focused on two topics. First is to study the effect of different 437 

types of desert residential landscaping, such as mesic, xeric, and oasis, on LST, OWU and PSV 438 

at parcel level. This analysis requires extensive field surveys and very high spatial resolution 439 

remotely sensed data. The second direction can be the research on the combined effect of 440 

vegetation cover on LST, OWU and PSV for cities in other climate regions because the regional 441 

climate background also has a significant influence on the relationship. 442 

 443 

 444 

5. Conclusions 445 

Green infrastructure is a well-known and efficient urban heat mitigation strategy that can 446 

effectively lower ambient and surface temperatures, provide thermal comfort, and have various 447 

socio-economic and health benefits. Despite its ecosystem service values and benefits, increasing 448 

vegetated area in a desert city can also lead to a significant increase of outdoor water use, which 449 

is not ideal for long-term urban sustainable development. Moreover, landscaping is linked to 450 

property values, a central socio-economic concern in residential neighborhoods. It therefore 451 
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becomes crucial for residents to balance the tradeoffs between green infrastructure in order to 452 

maximize the heat mitigation effect, to minimize water usage, while also considering property 453 

value at the lowest cost of water use. 454 

This study has made four significant contributions to the sustainability of desert cities. 455 

First, we find that even though trees can efficiently reduce LST, its contribution to PSV is the 456 

lowest in a semi-arid desert environment. One implication of this finding is that trees might be a 457 

water effective means to mitigate urban heat and address income-based shade disparities in the 458 

city, while minimizing property value increases that could drive unintended consequences like 459 

gentrification. Second, minimizing the use of grass in a semi-arid desert city is crucial because it 460 

is the least water use efficient vegetation type, although it contributes to a higher PSV. Third, 461 

desert-adapted shrubs and trees can be widely promoted because they not only have higher water 462 

use efficiency, can significantly lower LST, but also have a relatively higher contribution to 463 

PSV. Paired, these findings suggest a slight trade-off between the most environmentally efficient 464 

landscape type (e.g., xeriscaping) and property value maximization (e.g., grass) in some existing 465 

residential neighborhoods. Nevertheless, there are multiple yard landscaping market types in 466 

Phoenix. Therefore, more work is needed to understand the extent to which the observed positive 467 

relationship between grass and property value is moderated by homeowner preferences across 468 

different style neighborhoods. Fourth, our results and findings provide strong evidence and a 469 

theoretical basis for the environmental benefits of turf removal programs and xeric or oasis style 470 

landscaping design, which can be used as a guideline by desert cities for a better design of 471 

residential landscaping for urban sustainable development in the future. 472 

 473 

 474 
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 673 
 674 
Figure 1. Map of study area and locations of selected residential communities. 675 

  676 
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 677 

Figure 2. Flowchart of research design. 678 
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 680 
Figure 3. Simple linear regression analysis among three dependent variables: (a) LST vs. OWU, 681 

(b) LST vs. PSV, and (c) OWU vs. PSV. 682 

  683 
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Table 1. Summary statistics of all the independent and dependent variables. These values were 684 

calculated based on all the selected single-family residential communities (n=302). 685 

 686 

Variable 
Independent Variables Dependent Variables 

Grass% Shrub% Tree% Soil% LSTa (°C) OWUb (mm) PSVc ($k) 

Min. 0.0 0.0 0.0 7.3 41.5 104.9 32.0 

Max. 34.6 17.8 42.7 97.0 55.6 800.0 4,700.0 

Mean (µ) 8.0 3.2 12.1 38.8 50.3 452.8 341.4 

Std. Dev. (σ) 4.8 4.5 8.1 12.8 2.5 123.0 429.2 

µ + σ 12.8 7.7 20.2 51.6 52.8 575.8 770.6 

µ + 2σ 17.6 12.1 28.3 64.4 55.3 698.8 1,199.8 

µ - σ 3.15 - 4.06 26.02 47.7 329.7 - 

µ - 2σ - - - - 45.2 206.7 - 

 687 

a Land surface temperature 688 

b Outdoor water use 689 

c Property sales value 690 

 691 
 692 
 693 
  694 
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Table 2. Multiple regression results of LST, OWU and PSV with percent vegetation cover 695 

 696 
Model 
(Dependent 
variable) 

A (LST1) B (OWU2) C (PSV3) 

R2 0.616 0.517 0.264 

Adj. R2 0.598 0.495 0.228 

p < 0.01 < 0.01 < 0.01 

RMSEa 1.626 77.113 429.540 

       

Independent 
variable 

Βb SEc p βd Β SE p β Β SE p β 

Grass% -0.135* 0.042 0.002 -0.242 10.172* 1.997 0.000 0.432 52.638* 13.595 0.000 0.442 

Shrub% -0.118* 0.046 0.012 -0.206 -1.588 2.175 0.467 -0.065 27.657* 12.881 0.035 0.247 

Tree% -0.243* 0.029 0.000 -0.689 3.680* 1.390 0.010 0.247 19.698* 7.926 0.015 0.300 

Soil% -0.009 0.020 0.646 -0.042 -2.114* 0.942 0.027 -0.229 12.297* 5.491 0.028 0.293 

Cons. 54.183* 1.121 0.000 - 410.5* 53.139 0.000 - -615.858 317.402 0.056 - 

 697 
1 Land surface temperature  698 

2 Outdoor water use 699 

3 Property sales value 700 

a Root mean square error 701 

b Unstandardized coefficients 702 

c Standard error 703 

d Standardized coefficients 704 

* Statistically significant at the 0.05 level 705 

  706 
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Table 3. Optimization results with top 5 scenarios 707 

 708 

Scenario Grass Shrub Tree Soil 
Predicted 
LSTa (ºC) 

Predicted 
OWUb (mm) 

Predicted 
PSVc ($k) 

a 2% 13% 7% 63% 50.1 331.3 761.6 

b 2% 13% 7% 62% 50.1 333.2 749.3 

c 2% 11% 8% 64% 50.2 334.4 738.2 

d 1% 13% 9% 62% 49.8 334.2 736.0 

e 1% 13% 8% 63% 50.0 327.5 728.6 
a Land surface temperature 709 

b Outdoor water use 710 

c Property sales value 711 

 712 






